10 template <
class PGraph> PGraph
GenGrid(
const int& Rows,
const int& Cols,
const bool& IsDir=
true);
12 template <
class PGraph> PGraph
GenStar(
const int& Nodes,
const bool& IsDir=
true);
14 template <
class PGraph> PGraph
GenCircle(
const int& Nodes,
const int& NodeOutDeg=1,
const bool& IsDir=
true);
16 template <
class PGraph> PGraph
GenFull(
const int& Nodes);
18 template <
class PGraph> PGraph
GenTree(
const int& Fanout,
const int& Levels,
const bool& IsDir=
true,
const bool& ChildPointsToParent=
true);
20 template <
class PGraph> PGraph
GenBaraHierar(
const int& Levels,
const bool& IsDir=
true);
26 template <
class PGraph> PGraph
GenRndGnm(
const int& Nodes,
const int& Edges,
const bool& IsDir=
true,
TRnd& Rnd=
TInt::Rnd);
64 template <
class PGraph>
65 PGraph
GenGrid(
const int& Rows,
const int& Cols,
const bool& IsDir) {
66 PGraph GraphPt = PGraph::New();
67 typename PGraph::TObj& Graph = *GraphPt;
68 Graph.Reserve(Rows*Cols, 4*Rows*Cols);
70 for (node = 0; node < Rows * Cols; node++) {
71 Graph.AddNode(node); }
72 for (r = 0; r < Rows; r++) {
73 for (c = 0; c < Cols; c++) {
74 const int nodeId = Cols*r + c;
76 Graph.AddEdge(nodeId, nodeId+Cols);
78 Graph.AddEdge(nodeId+Cols, nodeId); }
81 Graph.AddEdge(nodeId, nodeId+1);
83 Graph.AddEdge(nodeId+1, nodeId); }
90 template <
class PGraph>
91 PGraph
GenStar(
const int& Nodes,
const bool& IsDir) {
92 PGraph Graph = PGraph::TObj::New();
93 Graph->Reserve(Nodes, Nodes);
95 for (
int n = 1; n < Nodes; n++) {
98 if (Graph->HasFlag(
gfDirected) && ! IsDir) { Graph->AddEdge(n, 0); }
103 template <
class PGraph>
104 PGraph
GenCircle(
const int& Nodes,
const int& NodeOutDeg,
const bool& IsDir) {
105 PGraph Graph = PGraph::TObj::New();
106 Graph->Reserve(Nodes, Nodes*NodeOutDeg);
107 for (
int n = 0; n < Nodes; n++) {
109 for (
int n = 0; n < Nodes; n++) {
110 for (
int x = 0; x < NodeOutDeg; x++) {
111 Graph->AddEdge(n, (n+x+1) % Nodes);
112 if (Graph->HasFlag(
gfDirected) && ! IsDir) { Graph->AddEdge((n+x+1) % Nodes, n); }
118 template <
class PGraph>
120 PGraph Graph = PGraph::TObj::New();
121 Graph->Reserve(Nodes, Nodes*Nodes);
122 for (
int n = 0; n < Nodes; n++) {
124 for (
int n1 = 0; n1 < Nodes; n1++) {
125 for (
int n2 = 0; n2 < Nodes; n2++) {
126 if (n1 != n2) { Graph->AddEdge(n1, n2); }
132 template <
class PGraph>
133 PGraph
GenTree(
const int& Fanout,
const int& Levels,
const bool& IsDir,
const bool& ChildPointsToParent) {
134 const int Nodes = (int) (pow(
double(Fanout),
double(Levels+1)) - 1) / (Fanout - 1);
135 const int Edges = Nodes - 1;
136 PGraph GraphPt = PGraph::New();
137 typename PGraph::TObj& Graph = *GraphPt;
138 Graph.Reserve(Nodes, Edges);
140 for (node = 0; node < Nodes; node++) {
141 Graph.AddNode(node); }
143 for (node = 0; node < (int) Nodes - (
int) pow(
double(Fanout),
double(Levels)); node++) {
146 if (ChildPointsToParent) { Graph.AddEdge(Fanout*node+
edge, node); }
147 else { Graph.AddEdge(node, Fanout*node+
edge); }
149 Graph.AddEdge(node, Fanout*node+
edge);
150 Graph.AddEdge(Fanout*node+
edge, node);
173 template <
class PGraph>
176 PGraph GraphPt = PGraph::New();
177 typename PGraph::TObj& Graph = *GraphPt;
178 Graph.Reserve(Nodes, -1);
180 for (
int i = 0; i < 5; i++) { Graph.AddNode(i); }
181 Graph.AddEdge(1,2); Graph.AddEdge(2,3);
182 Graph.AddEdge(3,4); Graph.AddEdge(4,1);
183 Graph.AddEdge(1,0); Graph.AddEdge(3,0);
184 Graph.AddEdge(2,0); Graph.AddEdge(4,0);
186 const int CenterId = 0;
187 for (
int lev = 1; lev < Levels+1; lev++) {
188 const int MxNId = Graph.GetNodes();
190 for (
int d = 0; d < 4; d++) {
191 for (
int n = 0; n < MxNId; n++) { Graph.AddNode(); }
192 for (
int n = 0; n < MxNId; n++) {
193 typename PGraph::TObj::TNodeI NI = Graph.GetNI(n);
194 const int SrcId = n+MxNId*(d+1);
195 for (
int e = 0; e < NI.GetOutDeg(); e++) {
196 Graph.AddEdge(SrcId, NI.GetOutNId(e)+MxNId*(d+1));
202 for (
int n = MxNId; n < Graph.GetNodes(); n++) {
203 typename PGraph::TObj::TNodeI NI = Graph.GetNI(n);
205 int Pow = 1;
bool Skip =
false;
206 for (
int p = 1; p <= lev; p++) {
207 if (SrcId % (5*Pow) < Pow) { Skip=
true;
break; }
210 if (Skip) {
continue; }
211 Graph.AddEdge(SrcId, CenterId);
217 template <
class PGraph>
218 PGraph
GenRndGnm(
const int& Nodes,
const int& Edges,
const bool& IsDir,
TRnd& Rnd) {
219 PGraph GraphPt = PGraph::New();
220 typename PGraph::TObj& Graph = *GraphPt;
221 Graph.Reserve(Nodes, Edges);
222 IAssertR((1.0 * (Nodes-1) / 2 * (IsDir ? 2 : 1)) >= (1.0 * Edges / Nodes),
TStr::Fmt(
"Not enough nodes (%d), for edges (%d).", Nodes, Edges));
223 for (
int node = 0; node < Nodes; node++) {
224 IAssert(Graph.AddNode(node) == node);
226 for (
int edge = 0;
edge < Edges; ) {
229 if (SrcNId != DstNId && Graph.AddEdge(SrcNId, DstNId) != -2) {
230 if (! IsDir) { Graph.AddEdge(DstNId, SrcNId); }
237 namespace TSnapDetail {
239 template <
class PGraph>
241 typename PGraph::TObj::TNodeI NI1, NI2;
244 NI1 = Graph->GetRndNI();
245 OutDeg = NI1.GetOutDeg();
246 }
while (OutDeg == 0);
249 while (NI1.IsNbrNId(NId1) || NI1.IsNbrNId(NId2) || NI2.IsNbrNId(NId1) || NI2.IsNbrNId(NId2) || NI1.GetId()==NI2.GetId()) {
251 NI1 = Graph->GetRndNI();
252 OutDeg = NI1.GetOutDeg();
253 }
while (OutDeg == 0);
255 if (runs++ == 1000) {
return TIntPr(-1, -1); }
257 return TIntPr(NI1.GetId(), NI2.GetId());
TPair< TInt, TInt > TIntPr
PGraph GenTree(const int &Fanout, const int &Levels, const bool &IsDir=true, const bool &ChildPointsToParent=true)
Generates a tree graph of Levels levels with every parent having Fanout children. ...
#define IAssertR(Cond, Reason)
PNGraph GenRMatEpinions()
Generates a R-Mat graph, with a synthetic copy of the Epinions social network.
PUNGraph GenRewire(const PUNGraph &OrigGraph, const int &NSwitch, TRnd &Rnd)
Rewire a random undirected graph. Keeps node degrees the same, but randomly rewires the edges...
PNGraph GenRMat(const int &Nodes, const int &Edges, const double &A, const double &B, const double &C, TRnd &Rnd)
Generates a R-MAT graph using recursive descent into a 2x2 matrix [A,B; C, 1-(A+B+C)].
PGraph GenCircle(const int &Nodes, const int &NodeOutDeg=1, const bool &IsDir=true)
Generates a circle graph where every node creates out-links to NodeOutDeg forward nodes...
PGraph GenStar(const int &Nodes, const bool &IsDir=true)
Generates a graph with star topology. Node id 0 is in the center and then links to all other nodes...
PNGraph GenCopyModel(const int &Nodes, const double &Beta, TRnd &Rnd)
Generates a random scale-free network using the Copying Model.
PBPGraph GenRndBipart(const int &LeftNodes, const int &RightNodes, const int &Edges, TRnd &Rnd)
Generates a random bipartite graph.
PGraph GenRndGnm(const int &Nodes, const int &Edges, const bool &IsDir=true, TRnd &Rnd=TInt::Rnd)
Generates an Erdos-Renyi random graph.
PUNGraph GenDegSeq(const TIntV &DegSeqV, TRnd &Rnd)
Generates a random graph with exact degree sequence.
TIntPr GetRndEdgeNonAdjNode(const PGraph &Graph, int NId1, int NId2)
Returns a random edge in a graph Graph where the edge does not touch nodes NId1 and NId2...
PGraph GenBaraHierar(const int &Levels, const bool &IsDir=true)
Generates a Ravasz-Barabasi deterministic scale-free graph.
PUNGraph GenRndDegK(const int &Nodes, const int &NodeDeg, const int &NSwitch, TRnd &Rnd)
Generates a random graph where each node has degree exactly NodeDeg.
static double Round(const double &Val)
static double Power(const double &Base, const double &Exponent)
PNGraph GenForestFire(const int &Nodes, const double &FwdProb, const double &BckProb)
Generates a random Forest Fire, directed graph with given probabilities.
PUNGraph GenConfModel(const TIntV &DegSeqV, TRnd &Rnd)
Generates a random undirect graph with a given degree sequence.
PUNGraph GenPrefAttach(const int &Nodes, const int &NodeOutDeg, TRnd &Rnd)
Generates a power-law degree distribution using Barabasi-Albert model of scale-free graphs...
PGraph GenGrid(const int &Rows, const int &Cols, const bool &IsDir=true)
Generates a 2D-grid graph of Rows rows and Cols columns.
directed graph (TNGraph, TNEGraph), else graph is undirected TUNGraph
PUNGraph GenSmallWorld(const int &Nodes, const int &NodeOutDeg, const double &RewireProb, TRnd &Rnd)
Generates a randomly small-world graph using the Watts-Strogatz model.
static TStr Fmt(const char *FmtStr,...)
PUNGraph GenGeoPrefAttach(const int &Nodes, const int &OutDeg, const double &Beta, TRnd &Rnd)
Generates a random scale-free graph using the Geometric Preferential model.
int GetUniDevInt(const int &Range=0)
PUNGraph GenRndPowerLaw(const int &Nodes, const double &PowerExp, const bool &ConfModel, TRnd &Rnd)
Generates a random scale-free graph with power-law degree distribution.
PGraph GenFull(const int &Nodes)
Generates a complete graph on Nodes nodes. Graph has no self-loops.