SNAP Library 6.0, Developer Reference  2020-12-09 16:24:20
SNAP, a general purpose, high performance system for analysis and manipulation of large networks
gsvd.cpp
Go to the documentation of this file.
1 // Directed Graph Matrix -- sparse {0,1} row matrix
4  for (int NId = 0; NId < Graph->GetNodes(); NId++) {
5  if (! Graph->IsNode(NId)) { return false; }
6  }
7  return true;
8 }
9 
10 TNGraphMtx::TNGraphMtx(const PNGraph& GraphPt) : Graph() {
11  Graph = GraphPt;
12  if (! CheckNodeIds()) {
13  printf(" Renumbering nodes.\n");
14  Graph = TSnap::ConvertGraph<PNGraph>(GraphPt, true);
15  }
16 }
17 
18 // Result = A * B(:,ColId)
19 void TNGraphMtx::PMultiply(const TFltVV& B, int ColId, TFltV& Result) const {
20  const int RowN = GetRows();
21  Assert(B.GetRows() >= RowN && Result.Len() >= RowN);
22  const THash<TInt, TNGraph::TNode>& NodeH = Graph->NodeH;
23  for (int j = 0; j < RowN; j++) {
24  const TIntV& RowV = NodeH[j].OutNIdV;
25  Result[j] = 0.0;
26  for (int i = 0; i < RowV.Len(); i++) {
27  Result[j] += B(RowV[i], ColId);
28  }
29  }
30 }
31 
32 // Result = A * Vec
33 void TNGraphMtx::PMultiply(const TFltV& Vec, TFltV& Result) const {
34  const int RowN = GetRows();
35  Assert(Vec.Len() >= RowN && Result.Len() >= RowN);
36  const THash<TInt, TNGraph::TNode>& NodeH = Graph->NodeH;
37  for (int j = 0; j < RowN; j++) {
38  const TIntV& RowV = NodeH[j].OutNIdV;
39  Result[j] = 0.0;
40  for (int i = 0; i < RowV.Len(); i++) {
41  Result[j] += Vec[RowV[i]];
42  }
43  }
44 }
45 
46 // Result = A' * B(:,ColId)
47 void TNGraphMtx::PMultiplyT(const TFltVV& B, int ColId, TFltV& Result) const {
48  const int ColN = GetCols();
49  Assert(B.GetRows() >= ColN && Result.Len() >= ColN);
50  const THash<TInt, TNGraph::TNode>& NodeH = Graph->NodeH;
51  for (int i = 0; i < ColN; i++) Result[i] = 0.0;
52  for (int j = 0; j < ColN; j++) {
53  const TIntV& RowV = NodeH[j].OutNIdV;
54  for (int i = 0; i < RowV.Len(); i++) {
55  Result[RowV[i]] += B(j, ColId);
56  }
57  }
58 }
59 
60 // Result = A' * Vec
61 void TNGraphMtx::PMultiplyT(const TFltV& Vec, TFltV& Result) const {
62  const int RowN = GetRows();
63  Assert(Vec.Len() >= RowN && Result.Len() >= RowN);
64  const THash<TInt, TNGraph::TNode>& NodeH = Graph->NodeH;
65  for (int i = 0; i < RowN; i++) Result[i] = 0.0;
66  for (int j = 0; j < RowN; j++) {
67  const TIntV& RowV = NodeH[j].OutNIdV;
68  for (int i = 0; i < RowV.Len(); i++) {
69  Result[RowV[i]] += Vec[j];
70  }
71  }
72 }
73 
75 // Undirected Graph Matrix -- sparse {0,1} row matrix
77  for (int NId = 0; NId < Graph->GetNodes(); NId++) {
78  if (! Graph->IsNode(NId)) { return false; }
79  }
80  return true;
81 }
82 
83 TUNGraphMtx::TUNGraphMtx(const PUNGraph& GraphPt) : Graph() {
84  Graph = GraphPt;
85  if (! CheckNodeIds()) {
86  printf(" Renumbering %d nodes....", GraphPt->GetNodes());
87  TExeTm ExeTm;
88  Graph = TSnap::ConvertGraph<PUNGraph>(GraphPt, true);
89  /*TIntSet NIdSet;
90  for (TUNGraph::TNodeI NI = Graph->BegNI(); NI < Graph->EndNI(); NI++) {
91  NIdSet.AddKey(NI.GetId());
92  }
93  Graph = TUNGraph::New(); *Graph = *GraphPt; */
94  printf("done [%s]\n", ExeTm.GetStr());
95  }
96 }
97 
98 // Result = A * B(:,ColId)
99 void TUNGraphMtx::PMultiply(const TFltVV& B, int ColId, TFltV& Result) const {
100  const int RowN = GetRows();
101  Assert(B.GetRows() >= RowN && Result.Len() >= RowN);
102  const THash<TInt, TUNGraph::TNode>& NodeH = Graph->NodeH;
103  for (int j = 0; j < RowN; j++) {
104  const TIntV& RowV = NodeH[j].NIdV;
105  Result[j] = 0.0;
106  for (int i = 0; i < RowV.Len(); i++) {
107  Result[j] += B(RowV[i], ColId);
108  }
109  }
110 }
111 
112 // Result = A * Vec
113 void TUNGraphMtx::PMultiply(const TFltV& Vec, TFltV& Result) const {
114  const int RowN = GetRows();
115  Assert(Vec.Len() >= RowN && Result.Len() >= RowN);
116  const THash<TInt, TUNGraph::TNode>& NodeH = Graph->NodeH;
117  for (int j = 0; j < RowN; j++) {
118  const TIntV& RowV = NodeH[j].NIdV;
119  Result[j] = 0.0;
120  for (int i = 0; i < RowV.Len(); i++) {
121  Result[j] += Vec[RowV[i]];
122  }
123  }
124 }
125 
126 // Result = A' * B(:,ColId)
127 void TUNGraphMtx::PMultiplyT(const TFltVV& B, int ColId, TFltV& Result) const {
128  const int ColN = GetCols();
129  Assert(B.GetRows() >= ColN && Result.Len() >= ColN);
130  const THash<TInt, TUNGraph::TNode>& NodeH = Graph->NodeH;
131  for (int i = 0; i < ColN; i++) Result[i] = 0.0;
132  for (int j = 0; j < ColN; j++) {
133  const TIntV& RowV = NodeH[j].NIdV;
134  for (int i = 0; i < RowV.Len(); i++) {
135  Result[RowV[i]] += B(j, ColId);
136  }
137  }
138 }
139 
140 // Result = A' * Vec
141 void TUNGraphMtx::PMultiplyT(const TFltV& Vec, TFltV& Result) const {
142  const int RowN = GetRows();
143  Assert(Vec.Len() >= RowN && Result.Len() >= RowN);
144  const THash<TInt, TUNGraph::TNode>& NodeH = Graph->NodeH;
145  for (int i = 0; i < RowN; i++) Result[i] = 0.0;
146  for (int j = 0; j < RowN; j++) {
147  const TIntV& RowV = NodeH[j].NIdV;
148  for (int i = 0; i < RowV.Len(); i++) {
149  Result[RowV[i]] += Vec[j];
150  }
151  }
152 }
153 
155 // Graphs Singular Value Decomposition
156 namespace TSnap {
157 
158 void SetAllInvertSign(TFltV& ValV, const double& Val) {
159  for (int i = 0; i < ValV.Len(); i++) {
160  ValV[i] = -ValV[i];
161  }
162 }
163 bool IsAllValVNeg(TFltV& ValV, const bool& InvertSign) {
164  bool IsAllNeg=true;
165  for (int i = 0; i < ValV.Len(); i++) {
166  if (ValV[i]>0.0) { IsAllNeg=false; break; }
167  }
168  if (IsAllNeg && InvertSign) {
169  for (int i = 0; i < ValV.Len(); i++) {
170  ValV[i] = -ValV[i]; }
171  }
172  return IsAllNeg;
173 }
174 
175 void GetSngVals(const PNGraph& Graph, const int& SngVals, TFltV& SngValV) {
176  const int Nodes = Graph->GetNodes();
177  IAssert(SngVals > 0);
178  if (Nodes < 100) {
179  // perform full SVD
180  TFltVV AdjMtx(Nodes+1, Nodes+1);
181  TFltVV LSingV, RSingV;
182  TIntH NodeIdH;
183  // create adjecency matrix
184  for (TNGraph::TNodeI NodeI = Graph->BegNI(); NodeI < Graph->EndNI(); NodeI++) {
185  NodeIdH.AddKey(NodeI.GetId()); }
186  for (TNGraph::TNodeI NodeI = Graph->BegNI(); NodeI < Graph->EndNI(); NodeI++) {
187  const int NodeId = NodeIdH.GetKeyId(NodeI.GetId()) + 1;
188  for (int e = 0; e < NodeI.GetOutDeg(); e++) {
189  const int DstNId = NodeIdH.GetKeyId(NodeI.GetOutNId(e)) + 1; // no self edges
190  if (NodeId != DstNId) AdjMtx.At(NodeId, DstNId) = 1;
191  }
192  }
193  try { // can fail to converge but results seem to be good
194  TSvd::Svd1Based(AdjMtx, LSingV, SngValV, RSingV); }
195  catch(...) {
196  printf("\n***No SVD convergence: G(%d, %d)\n", Nodes, Graph->GetEdges()); }
197  } else {
198  // Lanczos
199  TNGraphMtx GraphMtx(Graph);
200  int CalcVals = int(2*SngVals);
201  //if (CalcVals > Nodes) { CalcVals = int(2*Nodes); }
202  //if (CalcVals > Nodes) { CalcVals = Nodes; }
203  //while (SngValV.Len() < SngVals && CalcVals < 10*SngVals) {
204  try {
205  if (SngVals > 4) {
206  TSparseSVD::SimpleLanczosSVD(GraphMtx, 2*SngVals, SngValV, false); }
207  else { TFltVV LSingV, RSingV; // this is much more precise, but also much slower
208  TSparseSVD::LanczosSVD(GraphMtx, SngVals, 3*SngVals, ssotFull, SngValV, LSingV, RSingV); }
209  }
210  catch(...) {
211  printf("\n ***EXCEPTION: TRIED %d GOT %d values** \n", 2*SngVals, SngValV.Len()); }
212  if (SngValV.Len() < SngVals) {
213  printf(" ***TRIED %d GOT %d values** \n", CalcVals, SngValV.Len()); }
214  // CalcVals += SngVals;
215  //}
216  }
217  SngValV.Sort(false);
218  //if (SngValV.Len() > SngVals) {
219  // SngValV.Del(SngVals, SngValV.Len()-1); }
220  //else {
221  // while (SngValV.Len() < SngVals) SngValV.Add(1e-6); }
222  //IAssert(SngValV.Len() == SngVals);
223 }
224 
225 void GetSngVec(const PNGraph& Graph, TFltV& LeftSV, TFltV& RightSV) {
226  const int Nodes = Graph->GetNodes();
227  TFltVV LSingV, RSingV;
228  TFltV SngValV;
229  if (Nodes < 500) {
230  // perform full SVD
231  TFltVV AdjMtx(Nodes+1, Nodes+1);
232  TIntH NodeIdH;
233  // create adjecency matrix
234  for (TNGraph::TNodeI NodeI = Graph->BegNI(); NodeI < Graph->EndNI(); NodeI++) {
235  NodeIdH.AddKey(NodeI.GetId()); }
236  for (TNGraph::TNodeI NodeI = Graph->BegNI(); NodeI < Graph->EndNI(); NodeI++) {
237  const int NodeId = NodeIdH.GetKeyId(NodeI.GetId()) + 1;
238  for (int e = 0; e < NodeI.GetOutDeg(); e++) {
239  const int DstNId = NodeIdH.GetKeyId(NodeI.GetOutNId(e)) + 1; // no self edges
240  if (NodeId != DstNId) AdjMtx.At(NodeId, DstNId) = 1;
241  }
242  }
243  try { // can fail to converge but results seem to be good
244  TSvd::Svd1Based(AdjMtx, LSingV, SngValV, RSingV); }
245  catch(...) {
246  printf("\n***No SVD convergence: G(%d, %d)\n", Nodes, Graph->GetEdges()); }
247  } else { // Lanczos
248  TNGraphMtx GraphMtx(Graph);
249  TSparseSVD::LanczosSVD(GraphMtx, 1, 8, ssotFull, SngValV, LSingV, RSingV);
250  }
251  TFlt MxSngVal = TFlt::Mn;
252  int ValN = 0;
253  for (int i = 0; i < SngValV.Len(); i++) {
254  if (MxSngVal < SngValV[i]) { MxSngVal = SngValV[i]; ValN = i; } }
255  LSingV.GetCol(ValN, LeftSV);
256  RSingV.GetCol(ValN, RightSV);
257  IsAllValVNeg(LeftSV, true);
258  IsAllValVNeg(RightSV, true);
259 }
260 
261 void GetSngVec(const PNGraph& Graph, const int& SngVecs, TFltV& SngValV, TFltVFltV& LeftSV, TFltVFltV& RightSV) {
262  const int Nodes = Graph->GetNodes();
263  SngValV.Clr();
264  LeftSV.Clr();
265  RightSV.Clr();
266  TFltVV LSingV, RSingV;
267  if (Nodes < 100) {
268  // perform full SVD
269  TFltVV AdjMtx(Nodes+1, Nodes+1);
270  TIntH NodeIdH;
271  // create adjecency matrix (1-based)
272  for (TNGraph::TNodeI NodeI = Graph->BegNI(); NodeI < Graph->EndNI(); NodeI++) {
273  NodeIdH.AddKey(NodeI.GetId()); }
274  for (TNGraph::TNodeI NodeI = Graph->BegNI(); NodeI < Graph->EndNI(); NodeI++) {
275  const int NodeId = NodeIdH.GetKeyId(NodeI.GetId())+1;
276  for (int e = 0; e < NodeI.GetOutDeg(); e++) {
277  const int DstNId = NodeIdH.GetKeyId(NodeI.GetOutNId(e))+1; // no self edges
278  if (NodeId != DstNId) AdjMtx.At(NodeId, DstNId) = 1;
279  }
280  }
281  try { // can fail to converge but results seem to be good
282  TSvd::Svd1Based(AdjMtx, LSingV, SngValV, RSingV);
283  } catch(...) {
284  printf("\n***No SVD convergence: G(%d, %d)\n", Nodes, Graph->GetEdges());
285  }
286  } else { // Lanczos
287  TNGraphMtx GraphMtx(Graph);
288  TSparseSVD::LanczosSVD(GraphMtx, SngVecs, 2*SngVecs, ssotFull, SngValV, LSingV, RSingV);
289  //TGAlg::SaveFullMtx(Graph, "adj_mtx.txt");
290  //TLAMisc::DumpTFltVVMjrSubMtrx(LSingV, LSingV.GetRows(), LSingV.GetCols(), "LSingV2.txt"); // save MTX
291  }
292  TFltIntPrV SngValIdV;
293  for (int i = 0; i < SngValV.Len(); i++) {
294  SngValIdV.Add(TFltIntPr(SngValV[i], i));
295  }
296  SngValIdV.Sort(false);
297  SngValV.Sort(false);
298  for (int v = 0; v < SngValIdV.Len(); v++) {
299  LeftSV.Add();
300  LSingV.GetCol(SngValIdV[v].Val2, LeftSV.Last());
301  RightSV.Add();
302  RSingV.GetCol(SngValIdV[v].Val2, RightSV.Last());
303  }
304  IsAllValVNeg(LeftSV[0], true);
305  IsAllValVNeg(RightSV[0], true);
306 }
307 
308 void GetEigVals(const PUNGraph& Graph, const int& EigVals, TFltV& EigValV) {
309  // Lanczos
310  TUNGraphMtx GraphMtx(Graph);
311  //const int Nodes = Graph->GetNodes();
312  //int CalcVals = int(2*EigVals);
313  //if (CalcVals > Nodes) { CalcVals = Nodes; }
314  //while (EigValV.Len() < EigVals && CalcVals < 3*EigVals) {
315  try {
316  if (EigVals > 4) {
317  TSparseSVD::SimpleLanczos(GraphMtx, 2*EigVals, EigValV, false); }
318  else { TFltVV EigVecVV; // this is much more precise, but also much slower
319  TSparseSVD::Lanczos(GraphMtx, EigVals, 3*EigVals, ssotFull, EigValV, EigVecVV, false); }
320  }
321  catch(...) {
322  printf("\n ***EXCEPTION: TRIED %d GOT %d values** \n", 2*EigVals, EigValV.Len()); }
323  if (EigValV.Len() < EigVals) {
324  printf(" ***TRIED %d GOT %d values** \n", 2*EigVals, EigValV.Len()); }
325  // CalcVals += EigVals;
326  //}
327  EigValV.Sort(false);
328  /*if (EigValV.Len() > EigVals) {
329  EigValV.Del(EigVals, EigValV.Len()-1); }
330  else {
331  while (EigValV.Len() < EigVals) EigValV.Add(1e-6);
332  }
333  IAssert(EigValV.Len() == EigVals);*/
334 }
335 
336 void GetEigVec(const PUNGraph& Graph, TFltV& EigVecV) {
337  TUNGraphMtx GraphMtx(Graph);
338  TFltV EigValV;
339  TFltVV EigVecVV;
340  TSparseSVD::Lanczos(GraphMtx, 1, 8, ssotFull, EigValV, EigVecVV, false);
341  EigVecVV.GetCol(0, EigVecV); // vector components are not sorted!!!
342  IsAllValVNeg(EigVecV, true);
343 }
344 
345 // to get first few eigenvectors
346 //void GetEigVec(const PUNGraph& Graph, const int& EigVecs, TFltV& EigValV, TVec<TFltV>& EigVecV) {
347 void GetEigVec(const PUNGraph& Graph, const int& EigVecs, TFltV& EigValV, TFltVFltV& EigVecV) {
348  const int Nodes = Graph->GetNodes();
349  // Lanczos
350  TUNGraphMtx GraphMtx(Graph);
351  int CalcVals = int(2*EigVecs);
352  if (CalcVals > Nodes) { CalcVals = Nodes; }
353  TFltVV EigVecVV;
354  //while (EigValV.Len() < EigVecs && CalcVals < 10*EigVecs) {
355  try {
356  TSparseSVD::Lanczos(GraphMtx, EigVecs, 2*EigVecs, ssotFull, EigValV, EigVecVV, false); }
357  catch(...) {
358  printf("\n ***EXCEPTION: TRIED %d GOT %d values** \n", CalcVals, EigValV.Len()); }
359  if (EigValV.Len() < EigVecs) {
360  printf(" ***TRIED %d GOT %d values** \n", CalcVals, EigValV.Len()); }
361  // CalcVals += EigVecs;
362  //}
363  TFltIntPrV EigValIdV;
364  for (int i = 0; i < EigValV.Len(); i++) {
365  EigValIdV.Add(TFltIntPr(EigValV[i], i));
366  }
367  EigValIdV.Sort(false);
368  EigValV.Sort(false);
369  for (int v = 0; v < EigValIdV.Len(); v++) { // vector components are not sorted!!!
370  EigVecV.Add();
371  EigVecVV.GetCol(EigValIdV[v].Val2, EigVecV.Last());
372  }
373  IsAllValVNeg(EigVecV[0], true);
374 }
375 
376 // Inverse participation ratio: normalize EigVec to have L2=1 and then I=sum_k EigVec[i]^4
377 // see Spectra of "real-world" graphs: Beyond the semicircle law by Farkas, Derenyi, Barabasi and Vicsek
378 void GetInvParticipRat(const PUNGraph& Graph, int MaxEigVecs, int TimeLimit, TFltPrV& EigValIprV) {
379  TUNGraphMtx GraphMtx(Graph);
380  TFltVV EigVecVV;
381  TFltV EigValV;
382  TExeTm ExeTm;
383  if (MaxEigVecs<=1) { MaxEigVecs=1000; }
384  int EigVecs = TMath::Mn(Graph->GetNodes(), MaxEigVecs);
385  printf("start %d vecs...", EigVecs);
386  try {
387  TSparseSVD::Lanczos2(GraphMtx, EigVecs, TimeLimit, ssotFull, EigValV, EigVecVV, false);
388  } catch(...) {
389  printf("\n ***EXCEPTION: TRIED %d GOT %d values** \n", EigVecs, EigValV.Len()); }
390  printf(" ***TRIED %d GOT %d values in %s\n", EigVecs, EigValV.Len(), ExeTm.GetStr());
391  TFltV EigVec;
392  EigValIprV.Clr();
393  if (EigValV.Empty()) { return; }
394  for (int v = 0; v < EigVecVV.GetCols(); v++) {
395  EigVecVV.GetCol(v, EigVec);
396  EigValIprV.Add(TFltPr(EigValV[v], TSnapDetail::GetInvParticipRatEig(EigVec)));
397  }
398  EigValIprV.Sort();
399 }
400 
401 namespace TSnapDetail {
402 double GetInvParticipRatEig(const TFltV& EigVec) {
403  double Sum2=0.0, Sum4=0.0;
404  for (int i = 0; i < EigVec.Len(); i++) {
405  Sum2 += EigVec[i]*EigVec[i];
406  Sum4 += pow(EigVec[i].Val, 4.0);
407  }
408  return Sum4/(Sum2*Sum2);
409 }
410 } // namespace TSnapDetail
411 
412 }; // namespace TSnap
void GetEigVals(const PUNGraph &Graph, const int &EigVals, TFltV &EigValV)
Computes top EigVals eigenvalues of the adjacency matrix representing a given undirected Graph...
Definition: gsvd.cpp:308
#define IAssert(Cond)
Definition: bd.h:262
static const T & Mn(const T &LVal, const T &RVal)
Definition: xmath.h:36
double GetInvParticipRatEig(const TFltV &EigVec)
Definition: gsvd.cpp:402
Main namespace for all the Snap global entities.
Definition: alg.h:1
TPair< TFlt, TInt > TFltIntPr
Definition: ds.h:97
Definition: tm.h:355
void GetInvParticipRat(const PUNGraph &Graph, int MaxEigVecs, int TimeLimit, TFltPrV &EigValIprV)
Definition: gsvd.cpp:378
void GetEigVec(const PUNGraph &Graph, TFltV &EigVecV)
Computes the leading eigenvector of the adjacency matrix representing a given undirected Graph...
Definition: gsvd.cpp:336
static void Lanczos(const TMatrix &Matrix, int NumEig, int Iters, const TSpSVDReOrtoType &ReOrtoType, TFltV &EigValV, TFltVV &EigVecVV, const bool &SvdMatrixProductP=false)
Definition: linalg.cpp:1134
static void SimpleLanczosSVD(const TMatrix &Matrix, const int &CalcSV, TFltV &SngValV, const bool &DoLocalReortoP=false)
Definition: linalg.cpp:1440
static void Lanczos2(const TMatrix &Matrix, int MaxNumEig, int MaxSecs, const TSpSVDReOrtoType &ReOrtoType, TFltV &EigValV, TFltVV &EigVecVV, const bool &SvdMatrixProductP=false)
Definition: linalg.cpp:1290
THash< TInt, TNode > NodeH
Definition: graph.h:455
TSizeTy Len() const
Returns the number of elements in the vector.
Definition: ds.h:575
bool IsAllValVNeg(TFltV &ValV, const bool &InvertSign)
Definition: gsvd.cpp:163
int GetNodes() const
Returns the number of nodes in the graph.
Definition: graph.h:503
static void LanczosSVD(const TMatrix &Matrix, int NumSV, int Iters, const TSpSVDReOrtoType &ReOrtoType, TFltV &SgnValV, TFltVV &LeftSgnVecVV, TFltVV &RightSgnVecVV)
Definition: linalg.cpp:1454
int GetNodes() const
Returns the number of nodes in the graph.
Definition: graph.h:192
Definition: dt.h:1386
TNGraphMtx(const PNGraph &GraphPt)
Definition: gsvd.cpp:10
bool Empty() const
Tests whether the vector is empty.
Definition: ds.h:570
void GetSngVec(const PNGraph &Graph, TFltV &LeftSV, TFltV &RightSV)
Computes the leading left and right singular vector of the adjacency matrix representing a directed G...
Definition: gsvd.cpp:225
void Clr(const bool &DoDel=true, const TSizeTy &NoDelLim=-1)
Clears the contents of the vector.
Definition: ds.h:1022
TUNGraphMtx(const PUNGraph &GraphPt)
Definition: gsvd.cpp:83
void Sort(const bool &Asc=true)
Sorts the elements of the vector.
Definition: ds.h:1318
void PMultiplyT(const TFltVV &B, int ColId, TFltV &Result) const
Definition: gsvd.cpp:47
Definition: gsvd.h:5
int GetRows() const
Definition: linalg.h:45
PNGraph Graph
Definition: gsvd.h:7
void PMultiplyT(const TFltVV &B, int ColId, TFltV &Result) const
Definition: gsvd.cpp:127
#define Assert(Cond)
Definition: bd.h:251
bool IsNode(const int &NId) const
Tests whether ID NId is a node.
Definition: graph.h:546
int GetCols() const
Definition: linalg.h:47
static void Svd1Based(const TFltVV &InMtx1, TFltVV &LSingV, TFltV &SingValV, TFltVV &RSingV)
Definition: xmath.cpp:1252
PUNGraph Graph
Definition: gsvd.h:31
const TVal & Last() const
Returns a reference to the last element of the vector.
Definition: ds.h:579
TSizeTy GetRows() const
Definition: ds.h:2252
TPair< TFlt, TFlt > TFltPr
Definition: ds.h:99
void GetSngVals(const PNGraph &Graph, const int &SngVals, TFltV &SngValV)
Computes largest SngVals singular values of the adjacency matrix representing a directed Graph...
Definition: gsvd.cpp:175
bool CheckNodeIds()
Definition: gsvd.cpp:76
int GetKeyId(const TKey &Key) const
Definition: hash.h:466
static void SimpleLanczos(const TMatrix &Matrix, const int &NumEig, TFltV &EigValV, const bool &DoLocalReortoP=false, const bool &SvdMatrixProductP=false)
Definition: linalg.cpp:1053
int AddKey(const TKey &Key)
Definition: hash.h:373
void PMultiply(const TFltVV &B, int ColId, TFltV &Result) const
Definition: gsvd.cpp:99
THash< TInt, TNode > NodeH
Definition: graph.h:145
Node iterator. Only forward iteration (operator++) is supported.
Definition: graph.h:383
void GetCol(const TSizeTy &ColN, TVec< TVal, TSizeTy > &Vec) const
Definition: ds.h:2390
bool IsNode(const int &NId) const
Tests whether ID NId is a node.
Definition: graph.h:235
void SetAllInvertSign(TFltV &ValV, const double &Val)
Definition: gsvd.cpp:158
bool CheckNodeIds()
Definition: gsvd.cpp:3
const char * GetStr() const
Definition: tm.h:368
TSizeTy Add()
Adds a new element at the end of the vector, after its current last element.
Definition: ds.h:602
TSizeTy GetCols() const
Definition: ds.h:2253
void PMultiply(const TFltVV &B, int ColId, TFltV &Result) const
Definition: gsvd.cpp:19
static const double Mn
Definition: dt.h:1390
const TVal & At(const TSizeTy &X, const TSizeTy &Y) const
Definition: ds.h:2256